Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position.

نویسندگان

  • E B Cahoon
  • Y Lindqvist
  • G Schneider
  • J Shanklin
چکیده

Acyl-acyl carrier protein (ACP) desaturases introduce double bonds at specific positions in fatty acids of defined chain lengths and are one of the major determinants of the monounsaturated fatty acid composition of vegetable oils. Mutagenesis studies were conducted to determine the structural basis for the substrate and double bond positional specificities displayed by acyl-ACP desaturases. By replacement of specific amino acid residues in a Delta6-palmitoyl (16:0)-ACP desaturase with their equivalents from a Delta9-stearoyl (18:0)-ACP desaturase, mutant enzymes were identified that have altered fatty acid chain-length specificities or that can insert double bonds into either the Delta6 or Delta9 positions of 16:0- and 18:0-ACP. Most notably, by replacement of five amino acids (A181T/A200F/S205N/L206T/G207A), the Delta6-16:0-ACP desaturase was converted into an enzyme that functions principally as a Delta9-18:0-ACP desaturase. Many of the determinants of fatty acid chain-length specificity in these mutants are found in residues that line the substrate binding channel as revealed by x-ray crystallography of the Delta9-18:0-ACP desaturase. The crystallographic model of the active site is also consistent with the diverged activities associated with naturally occurring variant acyl-ACP desaturases. In addition, on the basis of the active-site model, a Delta9-18:0-ACP desaturase was converted into an enzyme with substrate preference for 16:0-ACP by replacement of two residues (L118F/P179I). These results demonstrate the ability to rationally modify acyl-ACP desaturase activities through site-directed mutagenesis and represent a first step toward the design of acyl-ACP desaturases for the production of novel monounsaturated fatty acids in transgenic oilseed crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati.

Acyl-acyl carrier protein (ACP) desaturases (EC 1.14.19.2) are soluble enzymes that catalyse the insertion of a double bond into saturated fatty acid bound in saturated acyl chains bound to ACP in higher plants, producing cis-monounsaturated fatty acids. Three types of soluble acyl-ACP desaturases have been described: Δ(9)-acyl-ACP, Δ(6)-acyl-ACP and Δ(4)-acyl-ACP desaturases, which differ in t...

متن کامل

The biosynthesis of unsaturated fatty acids by bacilli. 3. Uptake and utilization of exogenous palmitate.

The apparent in viva substrate specificities for six bacilli desaturases, previously shown to insert a c&double bond into position five of palmitate and of one which desaturates in position 10 were determined in whole cells by a variety of methods. In addition, the positional specificity of double bond insertion and the rate of temperature-mediated inactivation of these desaturases were also de...

متن کامل

Substrate specificity, regioselectivity and cryptoregiochemistry of plant and animal omega-3 fatty acid desaturases.

In order to define the substrate requirements, regiochemistry and cryptoregiochemistry of the omega-3 fatty acid desaturases involved in polyunsaturated fatty acid formation, the genes Fad3 and fat-1 from Brassica napus and the nematode Caenorhabditis elegans respectively were expressed in baker's yeast (Saccharomyces cerevisiae). Various fatty acids, including deuterium-labelled thia-fatty aci...

متن کامل

Classification and substrate head-group specificity of membrane fatty acid desaturases

Membrane fatty acid desaturases are a diverse superfamily of enzymes that catalyze the introduction of double bonds into fatty acids. They are essential in a range of metabolic processes, such as the production of omega-3 fatty acids. However, our structure-function understanding of this superfamily is still developing and their range of activities and substrate specificities are broad, and oft...

متن کامل

FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases.

Polar membrane glycerolipids occur in a mixture of molecular species defined by a polar head group and characteristic acyl groups esterified to a glycerol backbone. A molecular species of phosphatidylglycerol specific to chloroplasts of plants carries a Delta(3-trans) hexadecenoic acid in the sn-2 position of its core glyceryl moiety. The fad4-1 mutant of Arabidopsis thaliana missing this parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 10  شماره 

صفحات  -

تاریخ انتشار 1997